BEGIN:VCALENDAR PRODID:-//Microsoft Corporation//Outlook MIMEDIR//EN VERSION:1.0 BEGIN:VEVENT DTSTART:20151118T163000Z DTEND:20151118T170000Z LOCATION:17AB DESCRIPTION;ENCODING=QUOTED-PRINTABLE:ABSTRACT: The potential impact of blood flow simulations on the diagnosis and treatment of patients suffering from vascular disease is tremendous. Empowering models of the full arterial tree can provide insight into diseases such as arterial hypertension and enables the study of the influence of local factors on global hemodynamics. We present a new, highly scalable implementation of the Lattice Boltzmann method which addresses key challenges such as multiscale coupling, limited memory capacity and bandwidth, and robust load balancing in complex geometries. We demonstrate the strong scaling of a three-dimensional, high-resolution simulation of hemodynamics in the systemic arterial tree on 1,572,864 cores of Blue Gene/Q. Faster calculation of flow in full arterial networks enables unprecedented risk stratification on a per-patient basis. In pursuit of this goal, we have introduced computational advances that significantly reduce time-to-solution for biofluidic simulations. SUMMARY:Massively Parallel Models of the Human Circulatory System PRIORITY:3 END:VEVENT END:VCALENDAR