- Home
- Register
- Attend
- Conference Program
- SC15 Schedule
- Technical Program
- Awards
- Students@SC
- Research with SCinet
- HPC Impact Showcase
- HPC Matters Plenary
- Keynote Address
- Support SC
- SC15 Archive
- Exhibits
- Media
- SCinet
- HPC Matters
SCHEDULE: NOV 15-20, 2015
When viewing the Technical Program schedule, on the far righthand side is a column labeled "PLANNER." Use this planner to build your own schedule. Once you select an event and want to add it to your personal schedule, just click on the calendar icon of your choice (outlook calendar, ical calendar or google calendar) and that event will be stored there. As you select events in this manner, you will have your own schedule to guide you through the week.
Active Global Address Space (AGAS): Global Virtual Memory for Dynamic Adaptive Many-Tasking Runtimes
SESSION: Doctoral Showcase
EVENT TYPE: Doctoral Showcase
EVENT TAG(S): Storage, Resource Management
TIME: 11:00AM - 11:15AM
SESSION CHAIR(S): Melissa C. Smith
Presenter(s):Abhishek Kulkarni
ROOM:Ballroom E
ABSTRACT:
While the communicating sequential processes model, as realized by the Message Passing Interface, is presently the dominant scalable computing paradigm, such programs neither excel at the irregular computation patterns present in big data and adaptive execution, nor obviously scale to exascale. Dynamic and adaptive many-tasking execution models are suggested as alternatives to MPI in these realms. In such models, programs are described as lightweight tasks concurrently operating on data residing in a global address space. By their nature, these models need load balancing to be effective. When work follows data this naturally takes the form of dynamically balancing data.
We present High Performance ParalleX (HPX), a dynamic adaptive many-tasking runtime that maintains a scalable high-performance virtual global address space using distributed memory hardware. We describe the design and implementation of active global address space (AGAS) in HPX and demonstrate its benefit for global load balancing.
Chair/Presenter Details:
Melissa C. Smith (Chair) - Clemson University|
Abhishek Kulkarni - Indiana University
Click here to download .ics calendar file