sponsored byACMIEEE The International Conference for High Performance 
Computing, Networking, Storage and Analysis
FacebookTwitterGoogle PlusLinkedInYouTubeFlickr

SCHEDULE: NOV 15-20, 2015

When viewing the Technical Program schedule, on the far righthand side is a column labeled "PLANNER." Use this planner to build your own schedule. Once you select an event and want to add it to your personal schedule, just click on the calendar icon of your choice (outlook calendar, ical calendar or google calendar) and that event will be stored there. As you select events in this manner, you will have your own schedule to guide you through the week.

BLAST Motivated Small Dense Linear Algebra Library Comparison

SESSION: Regular & ACM Student Research Competition Poster Reception

EVENT TYPE: Posters, Receptions, ACM Student Research Competition

EVENT TAG(S): HPC Beginner Friendly, Regular Poster

TIME: 5:15PM - 7:00PM

SESSION CHAIR(S): Michela Becchi, Manish Parashar, Dorian C. Arnold

AUTHOR(S):Pate Motter, Ian Karlin, Christopher Earl

ROOM:Level 4 - Lobby

ABSTRACT:

Future computing architectures will be more memory bandwidth bound than current machines. Higher-order algorithms are more compute intense and can take advantage of the extra compute capabilities of future machines to produce higher quality answers. In this poster we focus on BLAST, an arbitrary order arbitrary Lagrangian-Eulerian (ALE) finite element code. Typical of finite element codes, BLAST requires both global sparse and local dense matrix solves. The dense matrix solves and sparse matrix assembly perform numerous small, dense matrix calculations and consume most of its runtime. Many libraries focus on optimizing small linear algebra operations. We created a benchmark suite that mimics BLAST’s most computationally intensive portions, currently implemented using MFEM. We use this suite to explore the performance of these libraries. For our benchmarks Armadillo, Blaze, and a template-based version of MFEM all produce promising results. Eigen’s feature set made it promising; however, its performance was not competitive.

Chair/Author Details:

Michela Becchi, Manish Parashar, Dorian C. Arnold (Chair) - University of Missouri|Rutgers University|University of New Mexico|

Pate Motter - University of Colorado Boulder

Ian Karlin - Lawrence Livermore National Laboratory

Christopher Earl - Lawrence Livermore National Laboratory

Add to iCal  Click here to download .ics calendar file

Add to Outlook  Click here to download .vcs calendar file

Add to Google Calendarss  Click here to add event to your Google Calendar