Research Motivation

Graph analysis is key for the study of biological, chemical, social, and other networks.

- Real-world graphs are big, irregular, complex
 - Graph analytics is one of DARPA’s 23 toughest mathematical challenges
 - Web graph: 50 B sites, 1 T+ links; Brain graph: 100 B neurons, 1,000 T synaptic connections

- Modern computational systems are also big and complex
 - Multiple levels of parallelism, memory hierarchy, configurations
 - Heterogeneous – host, GPU, coprocessors (Xeon Phi MIC)
 - Optimization – account for thread, socket, node, and system level scale

How can we design graph algorithms to be performant on large modern systems?

Summary of Contributions

- **Multistep** connectivity algorithms: on average 2× faster than prior state-of-the-art

- **FASCIA** and **FastPath** subgraph counting and min-weight path finding programs: up to orders-of-magnitude execution time improvement over prior art

- **PuLP** multi-objective multi-constraint partitioner: order of magnitude faster, order of magnitude less memory, comparable or better partition quality than state-of-the-art utilities for irregular small-world networks

- **Distributed Graph Layout** methodology for distributed memory; up to 12× performance improvements over naive methods

- **Complex Analysis** of largest publicly available web crawl using techniques derived from above work (3.5B vertices and 129B edges), analytic suite completes in only minutes

Algorithm Design for Graph Analytics

Multistep approach to graph connectivity (Slota et al. 2014)

- On average 2× faster than prior state-of-the-art

- **Key optimizations**: thread-local queues, minimize global synchronizations, direction optimizing BFS

- Optimized SCC code for high performance on manycore processors such as GPUs (Slota et al. 2015)

- Up to 3.25× performance improvement over optimized CPU code on irregular test graphs

- **Key optimizations**: loop manipulation for higher parallelism, shared-memory and other locality considerations, warp and team-based atomics and operations (team scan, team reduce, etc.)

- Developed the **PuLP** partitioner for real-world irregular graphs (Slota et al. 2014)

- Order-of-magnitude faster execution times and memory consumption than state-of-the-art with comparable partition quality

- Allows for concurrent multiple constrain and multiple objective partitioning

- Developed new fast ordering method, and analyzed graph analytic performance impacts of partitioning and intra-part vertex ordering

- PuLP partitioning can have up to a 12× speedup on communication times; our vertex ordering can have up to 5× speedup on computation times against naive methods

Distributed Graph Analysis

- Developed implementation strategy for large scale distributed graph analytics

- Can process graphs with hundreds of billions of edges in minutes on only 4 K cores

- Figures above compare PageRank and WCC implementations to several popular frameworks, demonstrate 97× and 37× average speedup across test set

- Implementations only require a few hundred lines of C code at most

- **Takeaway**: HPC systems can be effectively utilized for large-scale graph analysis