Designing High Performance and Energy-Efficient MPI Collectives for Next Generation Clusters

Akshay Venkatesh, 5th year Ph.D student
Advisor : DK Panda
Network-based Computing Lab, OSU
• Introduction
• Problem Statement
• Challenges
• Contributions and Results
• Future work
• Conclusions
• Introduction
• Problem Statement
• Challenges
• Contributions and Results
• Future work
• Conclusions
Culmination of Dennard’s Scaling* has yielded manyfold increase in parallelism on processing chips and has placed emphasis on power/energy conservation of systems.

High performance computing domain has seen increased use accelerators/co-processors such as NVIDIA GPUs/Intel MICs.

Scientific applications routinely use these specialized hardware to accelerate compute phases owing to their >= 1 Teraflops/device capability at comparatively lower power footprint.

MPI/PGAS serve as the de facto programming models to amalgamate capacities of several such distributed heterogeneous nodes.

* Power density remains constant
• Introduction
• **Problem Statement**
• Challenges
• Contributions and Results
• Future work
• Conclusions
With diversification of compute platforms, it is important to ensure that compute and communication phases of long running applications are efficient.

=> Execution time and energy usage are two dimensions that demand attention.

NVIDIA GPUs and Intel MICs (available as PCIe devices) introduce differential compute and memory costs.

MPI collectives such as Broadcast, Alltoall and Allgather can contribute to a significant fraction of total application execution time and energy.

Minimizing latency, increasing overlap and minimizing energy of MPI collectives require rethinking of underlying algorithms.
Popular algorithms such as Bruck’s allgather/alltoall algorithms, recursive doubling and ring algorithms assume uniformity of cost paths \(\Rightarrow\) Repeated use of non-optimal paths and steps in heterogeneous systems

Existing runtimes that support communication operations from GPU buffers do not exploit novel mechanisms such as **GPUDirect RDMA** in throughput-critical scenarios

Methods to hide latency (critical for GPUs) are unavailable in the form of non-blocking GPU collectives

Rules to apply energy efficiency levers during MPI calls in an application-oblivious manner that works for irregular/regular communication patterns do not exist
• Introduction
• Problem Statement
• Challenges
• Contributions and Results
• Future work
• Conclusions
• Can variations of popular collective algorithms be proposed that is better suited towards platforms with heterogeneous communication cost paths and compute capacities?
• Can new heuristics lead to reduced collective communication cost in heterogeneous clusters?
• Can direct-GPU memory access mechanisms such as NVIDIA GPUDirect-RDMA be coupled with existing paradigms such as the hardware multicast feature for throughput oriented applications?
• Can direct-GPU memory access mechanisms such as GPUDirect-RDMA and associated CUDA features be combined with network offload methods such as CORE-Direct to realize efficient non-blocking GPU collectives for good overlap and latency?
• Can a set of generic rules be proposed for point-to-point and collective routines such that energy savings are made only at relevant calls with negligible performance degradation?
• Can these rules ensure energy-savings in an application-oblivious manner and not just to well balanced applications?
• Introduction
• Problem Statement
• Challenges
• Contributions and Results
• Future work
• Conclusions
Contributions Outline

Distributed Scientific Applications (PSDNS, HPL, Graph500, Lulesh, Mini-apps, Sweep3D, Streaming-class)

Programming Models for Communication (MPI, PGAS)

Collectives (Bcast, Allgather, Alltoall)

Algorithms (knomial, Bruck’s, pairwise, Ring)

Programming Models for Computation

Point-to-point operations (send, recv)

RMA ops (Put, Get, Fence, Flush)

Rendezvous Protocols (RDMA-Read, RDMA-Write)

Eager Protocols (send-recv, RDMA-Fastpath)

MUX

Network-centric DMA ops (IB -RC, UD, Mcast, offload)

PCIe-centric DMA ops (CUDA, SCIF)

CPU-centric ops (load, store)
Contributions Outline

Distributed Scientific Applications (PSDNS, HPL, Graph500, Lulesh, Mini-apps, Sweep3D, Streaming-class)

Programming Models for Communication (MPI, PGAS)
 - Collectives (Bcast, Allgather, Alltoall)
 - Algorithms (knomial, Bruck’s, pairwise, Ring)

Programming Models for Computation
 - Point-to-point operations (send, recv)
 - RMA ops (Put, Get, Fence, Flush)
 - Eager Protocols (send-recev, RDMA-Fastpath)
 - Rendezvous Protocols (RDMA-Read, RDMA-Write)

Network-centric DMA ops (IB -RC, UD, Mcast, offload)

PCle-centric DMA ops (CUDA, SCIF)

CPU-centric ops (load, store)

Dictates execution time and energy usage

MUX
Distributed Scientific Applications (PSDNS, HPL, Graph500, Lulesh, Mini-apps, Sweep3D, Streaming-class)

Programming Models for Communication (MPI, PGAS)

- Collectives (Bcast, Allgather, Alltoall)
 - Algorithms (knomial, Bruck’s, pairwise, Ring)

- Point-to-point operations (send, recv)
 - Rendezvous Protocols (RDMA-Read, RDMA-Write)
 - Eager Protocols (send-receive, RDMA-Fastpath)

- MUX

Programming Models for Computation

RMA ops (Put, Get, Fence, Flush)

Network-centric DMA ops (IB -RC, UD, Mcast, offload)

PCle-centric DMA ops (CUDA, SCIF)

CPU-centric ops (load, store)

Focus of Contributions
• Delegations mechanisms for dense collectives
• Path-cost aware collective adaptations
• Combining GPUDirect RDMA and hardware multicast for streaming apps
• Combining GPUDirect RDMA and CORE-Direct for non-blocking GPU collectives
• Application-oblivious Energy-Aware MPI (EAM) runtime
• Delegations mechanisms for dense collectives
• Path-cost aware collective adaptations
• Combining GPUDirect RDMA and hardware multicast for streaming apps
• Combining GPUDirect RDMA and CORE-Direct for non-blocking GPU collectives
• Application-oblivious Energy-Aware MPI (EAM) runtime
Delegation Mechanisms

Node 1

Step 1

0\(H\) 1\(M\) 2\(H\) 3\(M\)

Step 2

0\(H\) 1\(M\) 2\(H\) 3\(M\)

Step 3

0\(H\) 1\(M\) 2\(H\) 3\(M\)

Node 2

Default Pairwise Alltoall

Pairwise Algorithm – used for large message alltoall operations

Sandy Bridge

PCle Device (MIC/GPU)

General Purpose CPU

NIC

0.9 GB/s

5.2 GB/s

7 GB/s

7 GB/s

6.3 GB/s

6.3 GB/s

NIC

0\(H\) 1\(M\)

0.9 GB/s

5.2 GB/s

7 GB/s

7 GB/s

6.3 GB/s

6.3 GB/s
Delegation Mechanisms

Node 1 Node 2

Step 1 \(0_H, 1_M\) \(2_H, 3_M\)

Step 2 \(0_H, 1_M\) \(2_H, 3_M\)

Step 3 \(0_H, 1_M\) \(2_H, 3_M\)

Default Pairwise Alltoall

Node 1 Node 2

Step 1 \(0_H, 1_M\) \(2_H, 3_M\)

Step 2 \(0_H, 1_M\) \(2_H, 3_M\)

Step 3 \(0_H, 1_M\) \(2_H, 3_M\)

Selective-rerouting Pairwise Alltoall (delegated)
Delegation Mechanisms

Node 1

Step 1: 0_H 1_M 2_H 3_M
Step 2: 0_H 1_M 2_H 3_M
Step 3: 0_H 1_M 2_H 3_M

Default Pairwise Alltoall

Node 2

Step 1: 0_H 1_M 2_H 3_M
Step 2: 0_H 1_M 2_H 3_M
Step 3: 0_H 1_M 2_H 3_M

Selective-rerouting Pairwise Alltoall (delegated)

Node 1

Step 1: 0_H 1_M 2_H 3_M
Step 2: 0_H 1_M 2_H 3_M
Step 3: 0_H 1_M 2_H 3_M

Node 2

Step 1: 0_H 1_M 2_H 3_M
Step 2: 0_H 1_M 2_H 3_M
Step 3: 0_H 1_M 2_H 3_M
Delegation Mechanisms

Node 1 Node 2

Step 1
0_H 1_M 2_H 3_M

Step 2
0_H 1_M 2_H 3_M

Step 3
0_H 1_M 2_H 3_M

Default Pairwise Alltoall

Step 1
0_H 1_M 2_H 3_M

Step 2
0_H 1_M 2_H 3_M

Step 3
0_H 1_M 2_H 3_M

Selective-rerouting Pairwise Alltoall (delegated)
Delegation Mechanisms

Node 1 Node 2

Step 1

0_H 1_M 2_H 3_M

Step 2

0_H 1_M 2_H 3_M

Step 3

0_H 1_M 2_H 3_M

Default Pairwise Alltoall

Node 1 Node 2

Step 1

0_H 1_M 2_H 3_M

Step 2

0_H 1_M 2_H 3_M

Step 3

0_H 1_M 2_H 3_M

Selective-rerouting Pairwise Alltoall (delegated)
Delegation Mechanisms

Default Pairwise Alltoall

Selective-rerouting Pairwise Alltoall (delegated)
• Similar delegation approach applicable to other important collectives (Allgather, Allreduce, Bcast and Gather)
• Results
• Delegations mechanisms for dense collectives
• Path-cost aware collective adaptations
• Combining GPUDirect RDMA and hardware multicast for streaming apps
• Combining GPUDirect RDMA and CORE-Direct for non-blocking GPU collectives
• Application-oblivious Energy-Aware MPI (EAM) runtime
Default Ring algorithm

- Cost of the ring dictated by slowest sub-path in the ring
- All outgoing paths from the PCIe device are the slowest owing to read performance
- Total cost \(= (n - 1) \times T_{\text{slowest}} \)
The goal is to ensure that each node has a host processes lined up as border node.

If there is at least one host process/node then virtual ranks can be assigned such that no MIC processes are at the border.

Slow paths still exist but $T_{new_{slowest}} < T_{slowest}$.

Total cost $= (n - 1) * T_{new_{slowest}}$.
Default recursive doubling algorithm

Step 1 – message size = m

Step 2 – message size = 2m

Step 3 – message size = 4m
Schedule-reordered recursive doubling algorithm

Step 1 – message size = m

- Ensures that largest transfers don’t occur on the slowest paths

Step 2 – message size = 2m

Step 3 – message size = 4m
Results of delegation schemes and adaptations
• Delegations mechanisms for dense collectives
• Path-cost aware collective adaptations
• Combining GPUDirect RDMA and hardware multicast for streaming apps
• Combining GPUDirect RDMA and CORE-Direct for non-blocking GPU collectives
• Application-oblivious Energy-Aware MPI (EAM) runtime
Existing schemes that broadcast GPU data using hardware multicast did not exploit novel direct-GPU memory access mechanisms like GPUDirect RDMA (GDR)

This leads to unexploited performance possibilities and detrimental to throughput-oriented streaming applications

However, combining GDR with UD-based multicast is challenging
- We propose a scheme that leverages on the scatter-gather list abstraction to specify host and GPU memory regions and solve the problem of addressing UD-packet header data and GPU payloads.
- An improvement of 50% reduction in latency is observed in comparison with host-staged approach with consistent scaling.
• Delegations mechanisms for dense collectives
• Path-cost aware collective adaptations
• Combining GPUDirect RDMA and hardware multicast for streaming apps
• Combining GPUDirect RDMA and CORE-Direct for non-blocking GPU collectives
• Application-oblivious Energy-Aware MPI (EAM) runtime
Default orchestration of non-blocking GPU Collectives

Scatter Phase 1
- Transfer all GPU content to host

Scatter Phase 2
- Post each send individually

Scatter Phase 3
- Transfer content back to GPU
Combing CORE-Direct and GPUDirect RDMA for non-blocking GPU collectives
We proposed schemes that leverages on CORE-Direct network offload technology and GPUDirect RDMA along with CUDA’s callback mechanism to realize non-blocking GPU collectives.

For dense collectives such as Iallgather and Ialltoall, the proposed methods help achieve close to 100% overlap in the large message range and exhibit favorable latency in comparison with blocking counterparts.
• Delegations mechanisms for dense collectives
• Path-cost aware collective adaptations
• Combining GPUDirect RDMA and hardware multicast for streaming apps
• Combining GPUDirect RDMA and CORE-Direct for non-blocking GPU collectives
• Application-oblivious Energy-Aware MPI (EAM) runtime
Contributions Outline

- State of the art approaches treat MPI as a blackbox and adopt aggressive power saving mechanisms which lead to degraded communication performance.

- We propose rules that rely on intimate knowledge of the underlying MPI point-to-point and collective protocols in addition to communication time prediction models such as logGP.
• Rules for applying appropriate energy levers for send and receive operations that use RGET protocol are shown.
• Up to 40% improvement in energy usage of graph500
• Up to 10 application benchmarks showed no greater than user-allowed 5% degradation in overall performance
• Proposed approach works for both irregular and regular communication patterns
• Introduction
• Problem Statement
• Challenges
• Contributions and Results
• Future work and Conclusions
• The work proposes methods to reduce latency (heterogeneous clusters) and energy usage (homogeneous) of time consuming collective operations in heavily used MPI applications

• Results show methods are scalable and lead to application execution time improvement

• Future directions include formulating energy rules for RMA operations for both homogeneous and heterogeneous clusters as well designing novel asynchronous transfer mechanisms with NVIDIA’s GPU offload technologies