Motivation

- Traditional bulk-synchronous parallel routines do not excel at irregular computation patterns present in big-data and adaptive applications.
- Asynchronous many-tasking (AMT) models, characterized by lightweight tasks concurrently operating on global data, are dynamic and adaptive in nature. When work follows data, global load-balancing naturally takes the form of dynamically balancing global data.
- PGAS is less well-suited for event-driven and active-message execution where ephemeral computation is performed on global data. Static nature of PGAS restricts the system's ability to load balance computation and communication.
- Examples of applications demonstrating runtime imbalance: dynamic graph algorithms, adaptive mesh-refinement, etc.
- Scalability and performance depends on initial data distribution and dynamic runtime-supported load and data balancing.

- We propose global virtual memory for AMT runtimes using an active global address space (AGAS).
 - The active global address space is “active” in two senses. It is virtualized and allows memory to dynamically relocate; its usage is primarily through the use of active messages.

Problem: Dynamic Load Imbalance

- Adaptive Mesh Refinement (AMR) affected by dynamic runtime load imbalance.
- Sub-optimal initial partitioning of data can create communication and computation hotspots that cause performance degradation—ever after employing the common latency-hiding optimizations.

High-Performance ParalleX (HPX-5)

- HPX-5 is a library-based implementation of the ParalleX model in C.
- The HPX-5 runtime system features:
 - Cooperatively scheduled lightweight threads
 - Inter-thread synchronization (LCOs)
 - Active messages (via Pallets)
 - Global Address Space (AGAS)
- Programming interfaces for global address manipulation, translation, and allocation; parcels, lightweight threads, and LCOs.
- Parcel transport using flexible one-sided or two-sided networking interfaces.
- Parcels target global addresses, carry payload data, identify message handlers for execution, and specify continuation addresses.

Network-Managed Global Virtual Memory

- Network-assisted AGAS leverages the capabilities of the network fabric to manage addressing rather than software at the endpoint hosts.
- Uses a GASNet conduit with IB multicast over unreliable datagram (UD) which allows receivers to accept packets from any node in the network.
- Address-to-port mapping in the switch determines the current owner of the global address.
- Storing the page table in the network switch makes lookup operation challenging.

Benefits of Network-assisted AGAS

- Messaging overheads can be reduced through the use of a software translation cache.
- However, software caching incurs storage and synchronization overheads.
- Page table mappings have to be evicted as pages are remapped.
- Sequential direct-mapped cache extended with two cache replacement policies: random and LRU (least recently used).
- Bounding the cache size adds extra cache eviction logic and incurs capacity cache misses.

Software AGAS uses a chunk translation table (CTT) to translate GVA to GPA. In the hardware implementation, this table is maintained in the switch.

Effect of bounded storage and cache replacement policies on the GUPS random access microbenchmark at 192 cores.

The figure on the right shows LRU-cache statistics at rank 0 for 2^26 random accesses of a 2^21 words global table.

Performance degradation of global updates due to thread contention. The concurrent cache is 25% slower than the hardware directory (cache bypass) solution.

Impact of dynamically moving pages (i.e., “remapping” blocks)

- The GUPS microbenchmark with a global table consisting of 4 pages distributed across 192 cores.
- As page movement frequency increases, the software approach takes increasingly longer. In contrast, the distributed approaches offered by the hardware can maintain a constant, or improved, runtime.

Conclusions

- The HPX-5 runtime system provides the dynamic, adaptive features necessary for the efficient execution of large-scale irregular applications.
- To manage both locality and load concerns for the programmer, HPX-5 provides global virtual memory using an active global address space (AGAS) where data can be dynamically migrated around in the system.
- Network-assisted AGAS incurs reduced common-case overheads; however, hardware remapping remains expensive due to the cost of flow programming on present-day switches.

Further Information

Please contact the authors for a demo.