Both ABS and GRT are efficient divergence detection methods.

1. ABS: Handling $F^N \rightarrow D^N$ Type
 - Initial inputs
 - Divergence causing input found by ABS
 - Real result
 - Floating-point result
 - $E[X^2] - (E[X])^2$ for $Var \geq 0$
 - $E[X^2] - (E[X])^2$ for $Var < 0$

2. GRT: Handling $F^N \rightarrow $ Boolean Type
 - Target: $Var = E[X^2] - (E[X])^2$
 - Post-condition: $(Var \geq 0)$
 - Enumerate input X
 - Verify $E[X^2] - (E[X])^2 < 0$

3. Divergence Detection Methods
 - 4-vertex polygon
 - 3-vertex polygon

4. Conclusions, Future Work, and References
 - Both ABS and GRT are efficient divergence detection methods work on many realistic numerical routines.
 - We plan to handle heterogeneity-induced divergences.

Supported in part by NSF CCF 1421726 (Design Validation Methods for Reliable and Efficient Floating-point)