Lessons from Post-processing Climate Data on Modern Flash-based HPC Systems

Adnan Haider¹, Sheri Mickelson(Advisor)², John Dennis(Advisor)², Xian-He Sun (Advisor)¹

¹Illinois Institute of Technology, USA; ²National Center of Atmospheric Research, USA

Flash-based Systems and **Post-processing Software**

Flash devices are a plausible solution to accelerate I/O bound applications. However, the tradeoffs associated with different flash architectures is unclear. We quantitatively assess two modern flash architectures using postprocessing climate data applications to facilitate correct matching between I/O workloads and flash storage architectures.

- · PyReshaper and PyAverager
- 90% of execution time is spent waiting for I/O to complete.
- Different datasets have vastly different I/O workloads (i.e. request size).
- IOR used for comparison with other workloads

Gordon System Results: Local Flash Architecture

- Each compute node has access to a single solid state drive (SSD)
- Remote direct memory access via Infiniband.
- Can cause accesses to become gueued 1) Single SSD cannot handle rate of parallel accesses and interconnect causes latency.

■ Metadata Time ■ Read Time

Read HDD Write SSD

Read SSD Write HDD

Read & Write SSD*

Read & Write HDD

Read DSSD Write HDD

Read & Write DSSD

Read & Write HDD

Ocean Dataset

Read HDD Write DSSD

2)Benefits of flash decreases at moderate scale and relatively small request sizes. 8/32 # of Processes / Amount of Data Written (GR) ■ 0-2 ■ 2-4 ■ 4-6 ■ 6-8 ■ 8-10 ■ 10-12

1000

Seconds

Wrangler System Results: **Pooled Flash Architecture**

- Uses DSSD devices which are faster than SSD.
- Each compute node has access to all DSSD devices (Pooled) via PCI Express
- Deploys parallel file system 1) Multiple DSSD and high throughput interconnect provide 2x to 6x improvements.

400

spuo 200

A local architecture provides similar speedups as a pooled architecture if using multiple flash devices per compute node.

Comparison of I/O

Architectures

Optimal # of SSDs

of Compute Nodes (SSDS) / # of Processes per Node

Ice —Land —Atmosphere —Atmosphere S.E.

Using a three-year newer system while not using flash (green bar) provides more speedup than using flash while keeping other hardware constant (purple bar)

Lessons Learned

- · An incorrect matching between storage architecture and I/O workload can hide the benefits of flash devices by increasing runtime by 2x.
- Hybrid I/O decreases flash storage consumption by half while decreasing runtime by 6x. Video Presentation→
- Local flash could be a cheaper alternative to a pooled architecture if scalability and interconnect bottlenecks are alleviated.
- Three main criteria which determine performance on flash systems. 1) Number of flash devices in job. 2) Interconnect 3) Data availability of data stored on flash.
- Three years of more advanced hardware without flash devices provides more speedup than flash devices for some datasets, lessening the need for flash.

750 TB of flash and 750 GB/s bandwidth - burst buffer

Acknowledgements

We would like to thank XSEDE. TACC, and SDSC for the use of their resources and support. XSEDE allocation # TG-ASC150025