
Modeling the Impact of Thread Configuration on
Power and Performance of GPUs

Tiffany Connors
Texas State University

San Marcos, TX
Email: tac115@txstate.edu

Apan Qasem (Advisor)
Texas State University

San Marcos, TX
Email: apan@txstate.edu

Qing Yi (Advisor)
University of Colorado at Colorado Springs

Colorado Springs, CO
Email: qyi@uccs.edu

Abstract—Because graphics processing units (GPUs) are a low-
cost option for achieving high computational power, they have
become widely used in high-performance computing. However,
GPUs can consume large amounts of power. Due to the associated
energy costs, improving energy-efficiency has become a growing
concern. By evaluating the impact of thread configuration on
performance and power trade-off, energy-efficient solutions can
be identified.

The impact that a thread configuration will have on the
performance and power trade-off of a GPU kernel can be
accurately predicted using machine learning. Using dynamic
features of a GPU kernel as input, a machine learning model can
be used to assist in the selection of thread configurations which
will improve performance and minimize power consumption.

I. INTRODUCTION

Due to the prevalence of GPUs in computational intensive
work, there is a need for solutions which will decrease the
associated energy costs of GPUs while continuing to provide
performance speedup. Through the modeling of performance
and power consumption, it is possible to identify a correlation
between the two and determine ways in which to make systems
more energy-efficient while continuing to provide high levels
of performance speedup.

II. METHODOLOGY

This work focuses specifically on optimizing the perfor-
mance and power trade-off of search algorithms. We inves-
tigated the impact of 20 feasible thread configurations, shown
in Table I, on the power and performance of four CUDA
programs. These programs solve the quadratic assignment
problem using 4 different algorithms: tabu search, simulated
annealing, and 2 variations of 2opt. Additionally, three input
datasets were used from QAPLIB[1]: lipa20, lipa30, and
tai25a. Each dataset varies in size and structure, thus affecting
the program’s behavior.

TABLE I
SET OF THREAD CONFIGURATIONS

64x32 128x16 256x8 512x4 1024x2
64x64 128x32 256x16 512x8 1024x4
64x96 128x48 256x24 512x12 1024x6
64x128 128x64 256x32 512x20 1024x8

The 20 thread configurations were applied individually to
the four different codes, resulting in 20 different versions of
each program. The GPU kernels were then executed using
the three input datasets. For each run, the average power
consumption was measured using the built-in power sensor
of the Tesla K20c GPU and the execution time was recorded.

The change in execution time and power consumption was
calculated by comparing the measured values to those of each
version of the same program and the trade-off was computed.

trade− off =
∆ execution time

∆ power consumption

The row of data was then assigned a classification of good
or bad based on the trade-off value:

Good: trade-off ≥ 1
Bad: trade-off < 1

A. Feature Extraction

To create a machine learning model that works with more
than one code, features which provide a good description of
the kernel’s characteristics must be determined. To do this,
runtime behavior was analyzed using NVIDIA’s GPU profiler,
nvprof, and a set of 52 dynamic features was extracted. To
normalize the values collected, each feature was divided by
the number of instructions executed. The set of features was
standardized by computing the z-score:

z1 =
x1 − µ

σ

B. Machine Learning

Nine different machine learning algorithms available from
the R caret package were used in this work. The purpose of
using varied methods was to determine if the same features
were significant factors across all models, as well as identify
which algorithms worked best with our data.

The data was sorted into separate files based on target
thread configuration. Each file was treated independently and
separate models were built, trained, and tested for each of
these configurations. The model accuracy was determined
using repeated k-fold cross-validation. The machine learning
algorithm which performed the best across all models was
selected to be used for building the final predictive model.



Fig. 1. Correlation matrices with and without highly-correlated variables.

C. Feature Selection

To reduce our set of features to include only those with
the highest predictive power, feature selection was performed.
First, any features with zero variance were removed. Features
were then analyzed in R using correlation matrices, Figure 1.

A feature is considered good if it is not highly correlated to
the other relevant features[2]. Therefore, any features with a
correlation of 95% or higher to another feature were removed
from the set. The remaining features were compared with each
of the models’ variable importance values to determine if the
features identified as significant factors remained in the new
set of features.

III. RESULTS

Through feature selection, the initial set of features was
reduced from 52 to 14. OrigThreads was most frequently
identified as the most significant factor. It appears that if the
thread count is large, reducing it to a lower number will be
more beneficial.

The thread configuration 128x16 produced desirable trade-
off 89.58% of the time. Changing the configuration to 1024x8
was always bad, therefore we were unable to build a model
for 1024x8 since the response label had no variance.

The predictive model was built using the boosted C5.0 tree
algorithm. Its average accuracy rate was 96%. The model
predicted that modifying the configuration to 128x16 will
negatively impact trade-off if OrigThreads is small, the number
of instructions sent to 32-bit global memory is low, and a
smaller number of read requests are sent to subp0. Otherwise,
the change will likely result in improved trade-off.

IV. CONCLUSION

To improve the energy-efficiency of GPU systems, this
poster proposes using machine learning to aid in the selection
of thread configurations which increase performance while
maintaining minimal increase in power consumption. By using
dynamic feature extraction and selecting features most closely
related to thread configuration, a machine learning model can
accurately predict the impact of a thread configuration on the
performance/power trade-off of a program.

Manually determining which thread configuration will pro-
vide optimal results is time consuming and involves modifying
and running the program using each candidate thread con-
figuration. This study addresses this issue by eliminating the
need to modify and test the program for each candidate thread
configuration, thus improving the efficiency of the process.
Once set-up, the framework presented in this study requires
only a single run in order to extract the dynamic features used
by the predictive model.

V. FUTURE WORK

In addition to using machine learning to predict if a change
in thread configuration will have a positive or negative impact
on trade-off, we intend to create a model whose output
is a recommended thread configuration. Future work will
expand the training dataset to include features from stencil
code and benchmark suites, allowing us to determine if the
same features important for predicting the impact of thread
configuration on QAP solvers are also significant for other
codes.

ACKNOWLEDGMENT

This material is based upon work supported by the National
Science Foundation REU program under Grant No. 1359275.

REFERENCES

[1] ”QAPLIB - A Quadratic Assignment Problem Library”
http://anjos.mgi.polymtl.ca/qaplib/, 2014

[2] L. Yu and H. Liu, ”Feature Selection for High-dimensional Data: A
Fast Correlation-Based Filter Solution,” in Proc. of the 12th International
Conference on Machine Learning, ICML’03, Washington, DC, 2003, pp.
856-863.


