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Introduction

Small dense and small sparse matrix multiplications play an
important role in modern high performance scientific appli-
cations, such as high-order FEM codes, block-sparse com-
pressed row/column subroutines and sparse direct solvers
using super-blocks, to mention just a few. Our proposed
solution: LIBXSMM. The library generates code for the fol-
lowing instruction set extensions: Intel SSE3, Intel AVX,
Intel AVX2, IMCI (KNCni) for Intel Xeon Phi coprocessors
(”KNC”), and Intel AVX-512 as found in the future Intel
Xeon Phi processor family and future Intel Xeon processors.
Hereby a small problem is characterized by the M , N and
K parameter of the corresponding matrix-matrix multipli-
cation. LIBXSMM is best suitable for problem sizes where
3
√
M ×N ×K < 80. LIBXSMM is available as free soft-

ware at https://github.com/hfp/libxsmm.

General Design and Interface

LIBXSMM achieves its high application-level performance by
a modular design providing a frontend (high level language
interface, and routine selection), and a backend part (appli-
cation specific xGEMM code generation).
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Figure 1: High-level software architecture of
LIBXSMM.

Currently, LIBXSMM supports three high-level frontends:

•C, functions for single and double precision (Fig. 2)

•C++ using polymorphism (overloaded fn., templates)

• FORTRAN using polymorphism (overloaded routines)

/** Automatically dispatched matrix

multiplication. */

void libxsmm smm(int m, int n, int k, const

float* a, const float* b, float* c);

void libxsmm dmm(int m, int n, int k, const

double* a, const double* b, double* c);

/** Non-dispatched matrix multiplication

using inline code. */

void libxsmm simm(int m, int n, int k, const

float* a, const float* b, float* c);

void libxsmm dimm(int m, int n, int k, const

double* a, const double* b, double* c);

/** Matrix multiplication using BLAS. */

void libxsmm sblasmm(int m, int n, int k,

const float* a, const float* b, float* c);

void libxsmm dblasmm(int m, int n, int k,

const double* a, const double* b, double* c);

/** If non-zero function pointer is returned,

call LIBXSMM’s assembly routine. */

libxsmm smm function libxsmm smm dispatch(int

m, int n, int k);

libxsmm dmm function libxsmm dmm dispatch(int

m, int n, int k);

Figure 2: Simple C language S/DGEMM interface of
LIBXSMM.

In addition to this simple interface LIBXSMM also offers
calls with full S/DGEMM interface to ensure a very simple
integration. This interfaces also supports various values for
α and β as well as leading dimensions which differ from
M ,N ,K.

Performance

We have evaluated the performance in the context of CP2K,
and in particular DBCSR, http://dbcsr.cp2k.org/ [1], and
SeisSol https://github.com/SeisSol/SeisSol/ [2].
Our test platform is a dual-socket Intel Xeon E5-
2699v3 (”Haswell”) machine with 36 cores reaching 118
GB/s memory bandwidth in STREAM Triad, and 1.1
TFLOPS compute performance with large DGEMMs. All
measurements are based on Version 1.0 of LIBXSMM,
https://github.com/hfp/libxsmm/releases.

CP2K

The performance depends on the workload, and therefore our
results consist of 386 important code specializations which
are binning into three groups of different problem sizes.
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Figure 3: This plot shows the average of the perfor-
mance with respect to groups of problem sizes (M,N,K).
The bins correspond to certain arithmetic intensities:
[0.4, 1.1], (1.1, 1.9], and (1.9, 4.5] in DP-FLOPS/Byte.
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Figure 4: This plot shows selected problem instances
where kernels with lower arithmetic intensity are bottle-
necked by memory bandwidth.

SeisSol

The earthquake code SeisSol is based on a high-order dis-
continuous Galerkin (DG) method. Its cell-local routines boil
down to small sparse and dense matrix multiplications. The
performance plots show one of the most important routines
(multiplication with stiffness and flux matrices) and full ap-
plication performance for several convergence orders.
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Figure 5: SeisSol’s kernel performance for M = K =
{4, 12(10), 20, 36(35), 56, 84} and N = 9.
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Figure 6: SeisSol performance of the LOH.1 bench-
mark (all FEM matrices dense, 1.1% slower than [3]).

Implementation

Frontend

LIBXSMM implements a three-level dispatch mechanism
which helps executing the potentially best-performing imple-
mentation by finding specialized code for a particular problem
instance (M,N,K):

1. Specialized routine (implemented in assembly code),

2. Inlinable C/C++ code or optimized FORTRAN code, or

3. BLAS library call (fallback).

All three levels are directly accessible allowing to customize
the mechanism (Fig. 2). The library also allows to amortize
the cost of the dispatch when multiple calls with the same
M, N, and K are needed. Moreover, the threshold determin-
ing when to fallback into the BLAS implementation can be
adjusted.
The assembly-code selection is based on a hashtable using
CRC32 checksums (whose calculation can be accelerated by
SSE4.2 instructions). Furthermore, the frontend features
an experimental auto-just-in-time compilation option, which
allows to build needed kernels on the fly. This includes an
implementation of a JIT-code cache to keep overheads as
low as possible.

Assembly Backend

The assembly generator’s implementation follows ideas well-
known in large xGEMMs, but due to the small sizes we
cannot employ copy routines to build optimal A or B pan-
els. Therefore it derives several highly performing micro-
kernels which are orchestrated to form a small xGEMM
operation. Specifically, our backend relies and on set of
M × N = {1S, 0.5V, 1V, 2V, 3V, 4V } × {1, 2, 3, 4} micro-
kernels in case of SSE,AVX and AVX2. S stands for scalar
execution and V for vector-register length. This ranges from
2 to 8 depending on instruction set and precision.
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Figure 7: schematic M ×N = 12× 3 micro-kernel.

Summary/Outlook

LIBXSMM ...

• ...achieves optimal performance for wide range of small
matrix multiplications on latest Intel Xeon E5v3 proces-
sors.

• ...achieves much better performance with respect to
DRAM bandwidth and peak FLOPs than vendor libraries.

• ...is freely available and includes examples for usage.

Current Research:

• adding a runtime auto-tuning component for both dis-
patching and micro-kernel composition
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