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The HPX runtime system is a critical component of the DOE XPRESS (eXascale PRogramming Environment and System Software) project and other projects world-wide. We are exploring a set of innovations in execution models, programming models and
methods, runtime and operating system software, adaptive scheduling and resource management algorithms, and instrumentation techniques to achieve unprecedented efficiency, scalability, and programmability in the context of billion-way parallelism.
A number of applications have been implemented to drive system development and quantitative evaluation of the HPX system implementation details and operational efficiencies and scalabilities.
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Kernels: various computational kernels, such as matrix transpose and fast multipole g s oy

algorithms, which are used to explore features of HPX and compare to other approaches.

Results Showing Benefits of HPX

GTCX Communication Reduction LULESH Weak Scaling

Performance Adaptation, Legacy Applications, and Summary

APEX : Performance Adaptation ‘ ‘ Legacy Application Support ‘ ‘ Summary

OMPTX is an HPX implementation of the
Intel OpenMP runtime, enabling existing

HPX runtime implementations arc
integrated with APEX (Autonomic
Performance Environment for
Exascale), a feedback/control library
for performance measurement and
runtime adaptation. APEX

observes the application,
runtime, OS and hardware to maintain
the APEX state, while the Policy
Engine enforces policy rules to adapt,
constrain or otherwise modify
application behavior.

Exascale programming models and runtime
systems are at a critical juncture in development.

OpenMP applications to exccute with HPX.
Systems based on light-weight tasks and data
Appllcaﬂnn T — dependence are an excellent method for extracting
APEX State T parallelism and achieving performance.
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" HPX is emerging as an important new path with
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NERSC's Edison, a Cray XC30 using the Aries APEX Immspcclinu
interconnect and Intel Xeon processors with a

peak performance of more than 2 petaflops.

NERSC’s Babbage machine uses the Intel Xeon
Phi™ coprocessor (codenamed “Knights
Corner”), which combines many Intel CPU
cores onto a single chip. Knights Corner is
available in multiple configurations, delivering
up to 61 cores, 244 threads, and 1.2 teraflops
of performance.
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APEX m.q Engine

Within a node, performance achieved for
OpenMP programs using OMPTX is
comparable to using the Intel OpenMP
Runtime. For example, below we show
speedup for a blocking LU

Application performance of HPX codes on very
recent architectures, including current and
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