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Abstract— CUDA shared memory is fast, on-chip storage. 

However, the bank conflict issue could cause a performance 
bottleneck. Current NVIDIA Tesla GPUs support memory bank 
accesses with configurable bit-widths. While this feature provides 
an efficient bank mapping scheme for 32-bit and 64-bit data 
types, it becomes trickier to solve the bank conflict problem 
through manual code tuning. This paper presents a framework 
for automatic bank conflict analysis and optimization. Given 
static array access information, we calculate the conflict degree, 
and then provide optimized data access patterns. Basically, by 
searching among different combinations of inter- and intra- 
array padding, along with bank access bit-width configurations, 
we can efficiently reduce or eliminate bank conflicts. From 
RODINIA and the CUDA SDK we selected 13 kernels with 
bottlenecks due to shared memory bank conflicts. After using our 
approach, these benchmarks achieve 5%-35% improvement in 
runtime.  
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I. INTRODUCTION  
CUDA shared memory is low-latency, on-chip storage. It is 

commonly used as cache to reduce memory access overhead, 
and as a shared space to enable efficient thread 
communication. Bank conflict is a primary issue when using 
shared memory. Normally programmers tune their code to 
reduce conflicts [1]. For earlier NVIDIA GPUs that have low-
order interleaving banks, the GCD (Greatest Common Divisor) 
function can be used to calculate the conflict degree [2]. 
However GCD is no longer sufficient by itself since dynamic 
bit-width bank access was adopted in the NVIDIA Kepler 
GPU. This feature provides better support for 4-byte and 8-
byte data types [3]. This work addresses reducing conflicts for 
configurable bank widths, addressing the broader optimization 
problem. Consider a 3DFD code as an example. A 2D array of 
4-byte elements is defined using shared memory storage. By 
simply changing the bank access width to 8-bytes, without any 
padding the conflict can be eliminated. This paper introduces 
an approach using a heuristic optimization method to reduce or 
eliminate conflicts. The optimization solution is found with a 
combination of inter-padding, intra-padding, and bank access 
bit-width configuration. 

II. CONFLICT ANALYSIS 
As shown in figure 1, given an array A of 4-byte elements, 

by setting the bank access width as 4-bytes or 8-bytes, the 
array data are mapped horizontally or vertically inside one 
layer of all banks. In this paper, we call them row-major bank 
mapping and column-major bank mapping. The proposed 
approach optimizes bank access efficiency by inter-padding, 
intra-padding, and bank bit-width configuration. Figure 2 

describes how these three schemes impact the conflict degree. 
Figure 2 (a) shows the default row-major data mapping with 2-
way conflict. (b), (c), and (d) transform data layout through 
different means to reduce conflicts. Since manually exploring 
the large potential solution search space is tedious and time 
consuming, our approach supports automated optimization.  

 
Fig. 1. Array data bank mapping and bank access bit-width  

 
Fig. 2. Using inter-padding, intra-padding, and changing bank 

access bitwidth to eliminate bank conflicts: (a) original problem has 2-
way conflict, (b) change access offset, (c) change access stride, and 

(d) use 8-byte bank access bit-width. 

A. Single warp conflict analysis 
Row-major bank mapping has no conflict when the stride is 

odd. For even strides, we divide them into two categories: (1) 
stride is power-of-two, and (2) other even valued strides.  

When the stride is power-of-two, we use the GCD result 
and the warp access offset to calculate the conflict degree. The 
warp access offset is the offset of the first visited site from the 
beginning of a layer. Given stride = 2s, bank_num = 2b, and r is 
the number of rows per layer:  

• When stride ≥  2b+r, all visit sites lie in the same bank. The 
bank conflict degree is the warp size.  

• When 2b ≤  stride < 2b+r, all visit sites lie in the same bank, 
and the bank conflict degree is ceil(GCD x 2s-b/r). 

• When stride < 2b , the bank_num can be divided by stride, 
and the conflict degree is ceil(GCD/r)..  

When stride is some other even number, we can write it as 
σ ×2e , where σ  is an odd number larger than 3, and e is a 
natural number. The warp visited sites can be divided into 2e 
groups, where each group occupies σ  rows. For the ith row of 
all groups, they visit the same banks. So there must be conflict 
if not all of them lie in the same layer. Inside each group, there 
is no conflict possibility. Based on this observation, the task 
becomes to check the conflict among the ith rows of all groups.   



For the column-major mapping, both even and odd strides 
could cause bank conflict. When stride is odd, the visited sites 
in the ith row of all layers have no conflict because GCD=1 for 
odd strides. Then we need to calculate the conflict caused by 
sites visited in different rows. Figure 3 is an example with 
stride=5, the conflict occurs between row1 of layer0 and row0 
of layer1. For even strides, the problem can be transformed 
either to an odd stride problem, or to a conventional bank 
access problem which can be solved by GCD.  

 
Fig. 3. An example of odd stride access for column-major bank 

mapping  

B. Single expression conflict analysis 
In CUDA, one shared memory access expression drives 

multiple warps in a single thread block to access a sequence of 
data elements in parallel. These warps share the same memory 
access pattern but have different offsets. The offset of the ith 
warp has the following relation with the offset of the first warp: 

offset[i]=mod(offset[0]+ i×C,L)  

where C is the offset increment step size, and L is the number 
of 4-byte elements that can be saved in one layer. This means 
that the warp offsets are periodic: when mod(i×C,L) = 0 , 
offset[i] equals to offset[0]. To get the overall bank conflict 
number, firstly, we calculate the number of distinct offsets and 
the conflict for each of them. Then we calculate the warp 
numbers that share the same offset. Finally, we compute the 
total conflict number. 

III. PARAMETER OPTIMIZATION STRATEGY 

  
Fig. 4. parameter optimization strategy 

Figure 4 illustrates the parameter optimization procedure. 
The outer most loop iterates over different bank access bit-
widths. Inside the loop, for each array, an initial investigation 
is used to collect information, which will be used for inter-
padding and intra-padding size optimization. Then a range of 
padding sizes are applied to this array, and the corresponding 
conflict number is calculated and stored in the intra-padding 
option list of this array. After obtaining the intra-padding 
option lists for all arrays, we use a greedy algorithm to obtain a 
solution that meets following requirements: 1) the total 
memory size used is within the maximum free memory size, 
and  2) for each array, this solution yields an optimized intra-
padding solution. After we obtain the optimization solution for 
each bank bit-width configuration, we select the one that has 
the minimum conflict number and uses less memory. Finally, if 
conflict is not eliminated, we tune the inter-padding size by 
inserting dummy space between arrays. These steps have been 
implemented in a prototype tool to automate the optimization. 

IV. EXPERIMENT RESULTS 
6 benchmarks (13 kernels) from RODINIA and the CUDA 

SDK are used to test the approach. The test platform includes a 
Telsa 20c with CUDA 5.0. The results in figure 2 show that 
this approach greatly reduces the bank access replay number 
and results in 5%-35% execution time improvement for these 
benchmarks. 

 

 
Fig. 5. Reduced bank access replay number in 100% and runtime 

speedup 

REFERENCES 
[1] Nvidia, C., Nvidia cuda c programming guide. 
[2] Baskaran, M.M., et al. A compiler framework for optimization of affine 

loop nests for GPGPUs. in Proceedings of the 22nd annual 
international conference on Supercomputing. 2008. ACM. 

[3] Fetterman, M., et al., Dynamic bank mode addressing for memory 
access. 2012, Google Patents. 

 


