
Optimizing CUDA Shared Memory Usage
Shuang Gao

EECS, University of Tennessee at Knoxville
Knoxville, USA
sgao3@utk.edu

Gregory D. Peterson
EECS, University of Tennessee at Knoxville

Knoxville, USA
gdp@utk.edu

Abstract— CUDA shared memory is fast, on-chip storage.

However, the bank conflict issue could cause a performance
bottleneck. Current NVIDIA Tesla GPUs support memory bank
accesses with configurable bit-widths. While this feature provides
an efficient bank mapping scheme for 32-bit and 64-bit data
types, it becomes trickier to solve the bank conflict problem
through manual code tuning. This paper presents a framework
for automatic bank conflict analysis and optimization. Given
static array access information, we calculate the conflict degree,
and then provide optimized data access patterns. Basically, by
searching among different combinations of inter- and intra-
array padding, along with bank access bit-width configurations,
we can efficiently reduce or eliminate bank conflicts. From
RODINIA and the CUDA SDK we selected 13 kernels with
bottlenecks due to shared memory bank conflicts. After using our
approach, these benchmarks achieve 5%-35% improvement in
runtime.

Keywords— shared memory; CUDA; bank conflict

I. INTRODUCTION
CUDA shared memory is low-latency, on-chip storage. It is

commonly used as cache to reduce memory access overhead,
and as a shared space to enable efficient thread
communication. Bank conflict is a primary issue when using
shared memory. Normally programmers tune their code to
reduce conflicts [1]. For earlier NVIDIA GPUs that have low-
order interleaving banks, the GCD (Greatest Common Divisor)
function can be used to calculate the conflict degree [2].
However GCD is no longer sufficient by itself since dynamic
bit-width bank access was adopted in the NVIDIA Kepler
GPU. This feature provides better support for 4-byte and 8-
byte data types [3]. This work addresses reducing conflicts for
configurable bank widths, addressing the broader optimization
problem. Consider a 3DFD code as an example. A 2D array of
4-byte elements is defined using shared memory storage. By
simply changing the bank access width to 8-bytes, without any
padding the conflict can be eliminated. This paper introduces
an approach using a heuristic optimization method to reduce or
eliminate conflicts. The optimization solution is found with a
combination of inter-padding, intra-padding, and bank access
bit-width configuration.

II. CONFLICT ANALYSIS
As shown in figure 1, given an array A of 4-byte elements,

by setting the bank access width as 4-bytes or 8-bytes, the
array data are mapped horizontally or vertically inside one
layer of all banks. In this paper, we call them row-major bank
mapping and column-major bank mapping. The proposed
approach optimizes bank access efficiency by inter-padding,
intra-padding, and bank bit-width configuration. Figure 2

describes how these three schemes impact the conflict degree.
Figure 2 (a) shows the default row-major data mapping with 2-
way conflict. (b), (c), and (d) transform data layout through
different means to reduce conflicts. Since manually exploring
the large potential solution search space is tedious and time
consuming, our approach supports automated optimization.

Fig. 1. Array data bank mapping and bank access bit-width

Fig. 2. Using inter-padding, intra-padding, and changing bank

access bitwidth to eliminate bank conflicts: (a) original problem has 2-
way conflict, (b) change access offset, (c) change access stride, and

(d) use 8-byte bank access bit-width.

A. Single warp conflict analysis
Row-major bank mapping has no conflict when the stride is

odd. For even strides, we divide them into two categories: (1)
stride is power-of-two, and (2) other even valued strides.

When the stride is power-of-two, we use the GCD result
and the warp access offset to calculate the conflict degree. The
warp access offset is the offset of the first visited site from the
beginning of a layer. Given stride = 2s, bank_num = 2b, and r is
the number of rows per layer:

• When stride ≥ 2b+r, all visit sites lie in the same bank. The
bank conflict degree is the warp size.

• When 2b ≤ stride < 2b+r, all visit sites lie in the same bank,
and the bank conflict degree is ceil(GCD x 2s-b/r).

• When stride < 2b , the bank_num can be divided by stride,
and the conflict degree is ceil(GCD/r)..

When stride is some other even number, we can write it as
σ ×2e , where σ is an odd number larger than 3, and e is a
natural number. The warp visited sites can be divided into 2e
groups, where each group occupies σ rows. For the ith row of
all groups, they visit the same banks. So there must be conflict
if not all of them lie in the same layer. Inside each group, there
is no conflict possibility. Based on this observation, the task
becomes to check the conflict among the ith rows of all groups.

For the column-major mapping, both even and odd strides
could cause bank conflict. When stride is odd, the visited sites
in the ith row of all layers have no conflict because GCD=1 for
odd strides. Then we need to calculate the conflict caused by
sites visited in different rows. Figure 3 is an example with
stride=5, the conflict occurs between row1 of layer0 and row0
of layer1. For even strides, the problem can be transformed
either to an odd stride problem, or to a conventional bank
access problem which can be solved by GCD.

Fig. 3. An example of odd stride access for column-major bank

mapping

B. Single expression conflict analysis
In CUDA, one shared memory access expression drives

multiple warps in a single thread block to access a sequence of
data elements in parallel. These warps share the same memory
access pattern but have different offsets. The offset of the ith
warp has the following relation with the offset of the first warp:

offset[i]=mod(offset[0]+ i×C,L)

where C is the offset increment step size, and L is the number
of 4-byte elements that can be saved in one layer. This means
that the warp offsets are periodic: when mod(i×C,L) = 0 ,
offset[i] equals to offset[0]. To get the overall bank conflict
number, firstly, we calculate the number of distinct offsets and
the conflict for each of them. Then we calculate the warp
numbers that share the same offset. Finally, we compute the
total conflict number.

III. PARAMETER OPTIMIZATION STRATEGY

Fig. 4. parameter optimization strategy

Figure 4 illustrates the parameter optimization procedure.
The outer most loop iterates over different bank access bit-
widths. Inside the loop, for each array, an initial investigation
is used to collect information, which will be used for inter-
padding and intra-padding size optimization. Then a range of
padding sizes are applied to this array, and the corresponding
conflict number is calculated and stored in the intra-padding
option list of this array. After obtaining the intra-padding
option lists for all arrays, we use a greedy algorithm to obtain a
solution that meets following requirements: 1) the total
memory size used is within the maximum free memory size,
and 2) for each array, this solution yields an optimized intra-
padding solution. After we obtain the optimization solution for
each bank bit-width configuration, we select the one that has
the minimum conflict number and uses less memory. Finally, if
conflict is not eliminated, we tune the inter-padding size by
inserting dummy space between arrays. These steps have been
implemented in a prototype tool to automate the optimization.

IV. EXPERIMENT RESULTS
6 benchmarks (13 kernels) from RODINIA and the CUDA

SDK are used to test the approach. The test platform includes a
Telsa 20c with CUDA 5.0. The results in figure 2 show that
this approach greatly reduces the bank access replay number
and results in 5%-35% execution time improvement for these
benchmarks.

Fig. 5. Reduced bank access replay number in 100% and runtime

speedup

REFERENCES
[1] Nvidia, C., Nvidia cuda c programming guide.
[2] Baskaran, M.M., et al. A compiler framework for optimization of affine

loop nests for GPGPUs. in Proceedings of the 22nd annual
international conference on Supercomputing. 2008. ACM.

[3] Fetterman, M., et al., Dynamic bank mode addressing for memory
access. 2012, Google Patents.

