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1. INTRODUCTION
The rise of the cloud and distributed data-intensive

(“Big Data”) applications puts pressure on data cen-
ter networks due to the movement of massive volumes
of data [2, 3, 4]. Reducing volume of communication
is pivotal for embracing greener data exchange by effi-
cient utilization of network resources [5, 6, 7, 8, 9]. We
propose a system for optimizing Big Data processing by
exploiting a mixing technique, a variant of index cod-
ing problem [10, 11], working in tandem with software-
defined network control for dynamically-controlled re-
duction in volume of communication. We present a
motivating use-case and developed a proof-of-concept
implementation of the proposed system in a real world
data center. We use Hadoop as our target framework
and Terasort, and Grep as workloads for performance
evaluation of the proposed system. The experimental
results exhibit coding advantage in terms of the volume
of communication, goodput, as well as number of bits
that can be transmitted per Joule of energy.

2. PROPOSED CODING BASED DATA FLOW
FOR HADOOP

We introduce three new stages, namely sampler, coder,
and preReducer to the traditional Hadoop MapReduce.
The primary objective of the sampler is to gather side
information. Similarly the primary objective of the
coder is to code, and of the preReducer is to decode.
The overall architecture is shown in Figure 1, while it
shows only two nodes it is in fact replicated across all
the nodes.

3. PERFORMANCE EVALUATION
We developed a prototype as well as a testbed to

evaluate the performance of the proposed coding based
approach. We use data from Hadoop shuffle to bench-
mark our proposed solution. The Hadoop jobs consisted
of the following two industry standard benchmarks.
∗ Part of the work was performed when the author was

with IBM Research and Hamilton Institute. Preliminary
thoughts on this work appear in [1].

Figure 1: The proposed coding based Hadoop
MapReduce data flow.

1. Terasort

2. Grep (Global Regular Expression)

3.1 Prototype

We have prototyped parts of the system in a data
center as an initial proof of concept implementation.
Our testbed consisted of 96 cores arranged in 8 identi-
cal blade-servers. Each server was equipped with twelve
x86 64 Intel Xeon cores, 128 GB of memory, and a sin-
gle 1 TB hard disk drive. The servers were arranged in
three racks. Furthermore, the servers were connected in
a typical data center configuration with OpenFlow en-
abled IBM RackSwitch G8264 as Top-of-Rack switches,
and OpenFlow enabled Pronto 3780 as Aggregation switches.
One server was used as the middlebox. The components
were implemented using Java, and Octave [12]. All the
servers were running Red Hat Enterprise Linux 6.2 op-
erating system [13].

We use the following metrics for quantitative evalua-
tion:

• Job Gain, defined as the increase (in %) in the
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Hadoop Job Sorting Grep
Job Gain 29 % 31%

Utilization Ratio .71 0.69

Table 1: Job Gain and Utilization Ratio using
proposed coding based shuffle.

number of parallel Hadoop jobs that can be run
simultaneously with coding based shuffle compared
to the number of parallel Hadoop jobs achieved by
standard Hadoop

• Utilization Ratio, defined as the ratio of link-level
packet transmissions when employing coding based
shuffle to the number of link-level packet transmis-
sion incurred by the standard Hadoop implemen-
tation.

Our experimental study shows that for both of the tested
benchmarks, the overhead to implement coding based
shuffle (in terms of transmission of extra bookkeeping
data in packet headers) was less than 4% in all the ex-
periments. Table 1 shows the results across the two
metrics for the two benchmarks. The results show sig-
nificant performance of our scheme compared to the
standard Hadoop implementation.

Noting the fact that our coding based scheme just
requires XORing of packets which is computationally
very fast operation and given high memory bandwidth
of the servers, we were able to process closer to line rate.
Specifically in the experimental setup, even during the
worst case scenario, the throughput of the coder was
809 Mbps on a 1 Gbps link.

3.2 Testbed

Our testbed consisted of eight virtual machines (VMs),
each running CentOS 7 as the operating system [14].
We used Citrix XenServer 6.5 as the underlying hyper-
visor [15]. Citrix XenCenter was used to manage the
XenServer environment and deploy, manage and mon-
itor VMs and remote storage [16]. Open vSwitch [17]
was used as the underlying switch providing network
connectivity to the VMs. Rest of the software imple-
mentation was same as used in Section 3.1.

Moreover we have implemented a stand-alone split-
shuffle, to provide better insights into shuffle dynamics,
where receiver service instances (e.g., reducers) fetch file
spills from sender service instances (e.g., mappers) in a
split fashion using standard Hadoop http mechanism.

To investigate performance of the proposed scheme as
well as middlebox placement in different scenarios, we
used following two commonly-used data center topolo-
gies:

1. Tree topology with middlebox at bisection (Top-
1).

Figure 2: Normalized VoC using Grep bench-
mark for both topologies Top-1 and Top-2.

Figure 3: Normalized VoC using Terasort
benchmark for both topologies Top-1 and Top-2

2. Tree topology with NIC-Teaming. Moreover, in
this topology the middlebox is placed at first L2-
switch (Top-2).

We use the following performance metrics:

• Volume-of-Communication (VoC), defined as the
amount of data crossing the network bisection.

• Goodput (GP), defined as the number of useful in-
formation bits delivered to the receiver service in-
stance per unit of time.

• Bits-per-Joule (BpJ), defined as the number of bits
that can be transmitted per Joule of energy.
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Figure 4: Goodput versus link rates for sorting
benchmark for topology Top-1.

Figure 5: Goodput for different oversubscrip-
tion ratios using sorting benchmark for topology
Top-1 with link rate at 1000 Mbps

Figure 6: BpJ versus link rates using sorting
benchmark for topology Top-1.
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